
  

Mathematical Proofs



  

Announcements

● Pset 0
● Due Friday Monday 

● Pset 1
● Goes out Friday, due following Friday
● LaTeX Beginner’s Quick Start Tutorial (LaTeX is the 

preferred tool for writing homework in this class)
● Office Hours

● They start Monday! Schedule will be on the course 
website by Friday. They will be accessible in person 
(or by Zoom for CGOE students).



  

Outline for Today

● How to Write a Proof
● Synthesizing definitions, intuitions, and 

conventions.
● Proofs on Numbers

● Working with odd and even numbers.
● Universal and Existential Statements

● Two important classes of statements.
● Variable Ownership

● Who owns what?



  

Combining Sets
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B = { 3, 4, 5 }
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What is a Proof?



  

A proof is an argument that
demonstrates why a conclusion is true, 
subject to certain standards of truth.



  

A mathematical proof is an argument 
that demonstrates why a mathematical 
statement is true, following the rules of 

mathematics.



  

Proofwriting is not like other forms of 
writing, or even other forms of math 

problems, and we understand this can be a 
big adjustment! 

Here is some advice from years of teaching 
proofwriting.



  

Rule: Proofs are meant to argue something 
precisely and completely. 

Advice: Well trained readers should find 
this persuasive, however precision and 
completeness are the goals you should 

have in mind, not persuasion in the usual 
social-emotional-rhetorical way that we 

think of persuasion. 



  

Rule: Skipping even one step of a proof is a 
big deal—it makes the proof logically invalid. 

Advice: Think of a proof as written driving 
directions from Point A to Point B, for 

someone who has never been, and who 
doesn’t have a GPS/phone. If you leave out 

one step, the driver will never get to the next 
street name in the sequence. They simply 

can’t continue, and will be permanently lost! 
Proofs are powerful, but their correctness is 

quite fragile. 

You could drive on Campus 
Dr forever and never get to 

Bryant St! :-(



  

Writing our First Proof



  

Definitions: 

An integer n is called even if
there is an integer k where n = 2k.

An integer n is called odd if
there is an integer k where n = 2k + 1.

Additionally, in this class, we will assume the following:
1. Every integer is either even or odd.

       2. No integer is both even and odd.



  

Theorem: For all integers n, if n is 
even, then n2 is even.



  

Theorem: For all integers n, if n is 
even, then n2 is even.

Step 1: find the formal 
definitions for any terms 
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The “if...then...” means that the “then” 
part is only guaranteed to hold when the 
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that the “if” condition is true of it. In 
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The “if...then...” means that the “then” 
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our reader to pick any integer assuming 
that the “if” condition is true of it. In 
other words, only pick even integers.



  

Our First Proof! 
Theorem: For all integers n, if n is even, then n2 is 
even.
 

Proof: Pick an arbitrary even integer n. We want
to show that n is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■
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Theorem: For all integers n, if n is even, then n2 
is even.

22  =  4 = 2 · 2
 

102  =  100 = 2 · 50
  

02  =  0 = 2 · 0
 

(-8)2  =  64 = 2 · 32
 

n2   =   = 2 · ?

You Could Try Some Examples

What’s the 
pattern? How do 
we predict this?

What’s the 
pattern? How do 
we predict this?
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You Could Draw Some Pictures

n2 = 2(2k2)
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proof.” It’s 
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nerd “mic drop.”
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Our Next Proof



  

Theorem: For all integers m and n,
if m and n are odd, then m + n is even.
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Question: How many of these are good first sentences of our 
proof? 

● We want to show that if m and n are odd, then m + n is 
even.

● Pick arbitrary integers n and m.

● Consider n=7 and m=3.

● Let n and m be arbitrary integers.

● Since n and m are odd, there are integers k and r such 
that n=2k + 1 and m = 2r + 1. 
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                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■
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You Could Draw Some Pictures

2k+1 2r+1

(2k+1) + (2r+1) = 2(k + r + 1)
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We ask the reader to make an arbitrary choice. 
Rather than specifying what m and n are, we’re 

signaling to the reader that they could, in 
principle, supply any choices of m and n that 
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anything we prove about m and n will generalize 

to all possible choices for those values.
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Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■
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expected to be written in complete 

sentences, so you’ll often use punctuation at 
the end of formulas.
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Some Little Exercises

● Here’s a list of other theorems that are true about odd 
and even numbers:
● Theorem: The sum and difference of any two even numbers is 

even.
● Theorem: The sum and difference of an odd number and an 

even number is odd.
● Theorem: The product of any integer and an even number is 

even.
● Theorem: The product of any two odd numbers is odd.

● Going forward, we’ll just take these results for granted. 
Feel free to use them in the problem sets.

● If you’d like to practice the techniques from today, try 
your hand at proving these results!



  

Universal and Existential Statements



  

Theorem: For all odd integers n,
there exist integers r and s where r2 – s2 = n.



  

Theorem: For all odd integers n,
there exist integers r and s where r2 – s2 = n.

This result is true for every possible 
choice of odd integer n. It’ll work for n = 

1, n = 137, n = 103, etc.

This result is true for every possible 
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Theorem: For all odd integers n,
there exist integers r and s where r2 – s2 = n.

We aren’t saying this is true for every 
choice of r and s. Rather, we’re saying 

that somewhere out there are (one or 
more) choices of r and s where this 

works.

We aren’t saying this is true for every 
choice of r and s. Rather, we’re saying 

that somewhere out there are (one or 
more) choices of r and s where this 

works.



  

Universal vs. Existential Statements

● A universally-quantified statement is a 
statement of the form

For all x, [some-property] holds for x.

● We've seen how to prove these statements.
● An existentially-quantified statement is a 

statement of the form

There is some x where [some-property] holds for 
x.

● How do you prove an existentially-quantified 
statement?



  

Theorem: For all integers n, if n is odd, then there 
exist integers r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.

Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■
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Proving an Existential Statement

● Over the course of the quarter, we will see 
several different ways to prove an 
existentially-quantified statement of the form

There is an x where [some-property] holds for x.

● Approach: Search far and wide, find a 
concrete example value for x that has the 
right property. In the proof, (1) announce the 
find to your reader, then (2) show why your 
choice is correct.



  
Theorem: For all odd integers n,

there exist integers r and s where r2 – s2 = n.

1 = ___ 2 – ___ 2

3 = ___ 2 – ___ 2

5 = ___ 2 – ___ 2

7 = ___ 2 – ___ 2

9 = ___ 2 – ___ 2

You Could Draw Some Pictures



  

1 = ___ 2 – ___ 2

3 = ___ 2 – ___ 2

5 = ___ 2 – ___ 2

7 = ___ 2 – ___ 2

9 = ___ 2 – ___ 2

Theorem: For all odd integers n,
there exist integers r and s where r2 – s2 = n.

You Could Try Some Examples

1 = ___ 2 – ___ 2

3 = 2 2 – 1 2

5 = 3 2 – 2 2

7 = 4 2 – 3 2

9 = 5 2 – 4 2

1 = 1 2 – 0 2

We’ve got a 
pattern – but why 
does this work?

We’ve got a 
pattern – but why 
does this work?



  

k +1

Theorem: For all odd integers n,
there exist integers r and s where r2 – s2 = n.

You Could Draw Some Pictures

k



  

k +1

Theorem: For all odd integers n,
there exist integers r and s where r2 – s2 = n.

k

(k+1)2  –  k2  =  2k+1

You Could Draw Some Pictures



  

Theorem: For all integers n, if n is odd, then there 
exist integers r and s where r2 – s2 = n.

Proof: Pick an arbitrary odd integer n. We will show
that there exist integers r and s where r2 – s2 = n.
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We ask the reader to make an arbitrary choice. 
Rather than specifying what n is, we’re signaling 
to the reader that they could, in principle, supply 

any choice n that they’d like.
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the proof.
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Theorem: If n is an integer,
then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.



  

Floors and Ceilings

● The notation ⌈x⌉ represents the ceiling of x, the 
smallest integer greater than or equal to x.

⌈1⌉ = 1          ⌈1.5⌉ = 2

⌈-1⌉ = -1        ⌈-1.5⌉ = -1
● The notation ⌊x⌋ represents is the floor of x, the 

largest integer less than or equal to x.

⌊1⌋ = 1          ⌊1.5⌋ = 1

⌊-1⌋ = -1        ⌊-1.5⌋ = -2

-3 -2 -1 0 1 2 3



  

Theorem: If n is an integer, then ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n.

Proof: Let n be an arbiitrary integer. We want to show that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = 
n. To do so,

we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

 

 

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

 
In either case, we see that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n, as required. ■

⌈n2 ⌉+⌊n2 ⌋ = ⌈2 k
2 ⌉+⌊2 k

2 ⌋
= ⌈k⌉+⌊k⌋
= 2 k

= n .

⌈n2 ⌉+⌊n2 ⌋ = ⌈2 k+1
2 ⌉+⌊2 k+1

2 ⌋
= ⌈k+1

2 ⌉+⌊k+1
2 ⌋

= (k+1)+k

= 2 k+1

= n .
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Hmmm...are we stuck? Typically, our 
third sentence (after the “assume” and 
“WTS”/”want to show” sentences) is an 
expansion of a definition word, such as 

“even.” Here we just have an integer, so 
there’s no definition to expand.

Let’s take a moment to do some work on 
scratch paper and see if we can find a 

way forward?
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scratch paper and see if we can find a 
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  Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

⌈⁰/₂⌉ ⌊⁰/₂⌋+ = 0 + 0 = 0

⌈¹/₂⌉ ⌊¹/₂⌋+ = 1 + 0 = 1

⌈²/₂⌉ ⌊²/₂⌋+ = 1 + 1 = 2

⌈³/₂⌉ ⌊³/₂⌋+ = 2 + 1 = 3

⌈⁴/₂⌉ ⌊⁴/₂⌋+ = 2 + 2 = 4

Scratch paper work.Scratch paper work.

You Could Try Some Examples



  Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

k kⁿ/₂⌈ⁿ/₂⌉ ⁿ/₂

n = 2k

⌊ⁿ/₂⌋

Scratch paper work.

Hm, too bad we weren’t 
asked to this proof for a 

theorem that says that n is 
even—that looks easy! :-( :-(

Scratch paper work.

Hm, too bad we weren’t 
asked to this proof for a 

theorem that says that n is 
even—that looks easy! :-( :-(

You Could Draw Some Pictures



  

k+1 k⌈ⁿ/₂⌉ ⌊ⁿ/₂⌋

Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

n = 2k + 1

Scratch paper work.

Hm, too bad we weren’t 
asked to this proof for a 

theorem that says that n is 
odd—a little harder than 

even, but we can still find a 
way. :-( :-(

Scratch paper work.

Hm, too bad we weren’t 
asked to this proof for a 

theorem that says that n is 
odd—a little harder than 

even, but we can still find a 
way. :-( :-(

You Could Draw Some Pictures



  

Theorem: If n is an integer, then ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n.

Proof: Let n be an integer. We want to show that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n. To do 
so, we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

 

 

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

 
In either case, we see that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n, as required. ■

⌈n2 ⌉+⌊n2 ⌋ = ⌈2 k
2 ⌉+⌊2 k

2 ⌋
= ⌈k⌉+⌊k⌋
= 2 k

= n .

⌈n2 ⌉+⌊n2 ⌋ = ⌈2 k+1
2 ⌉+⌊2 k+1

2 ⌋
= ⌈k+1

2 ⌉+⌊k+1
2 ⌋

= (k+1)+k

= 2 k+1

= n .

Turns out that we can just 
smash our two proofs 

together—the odd one and 
the even one—and that 
counts as a proof for all 

integers—yay!! 
Thanks, Proof by Cases!
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The case labels in effect 
introduce the new assumptions 
you wish you had, to make the 

proof solvable. Then you 
proceed to show your work 

from there.
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Who Owns What?

● The reader chooses and owns a value if you use wording 
like this:
● Pick an arbitrary natural number n.
● Consider some n ∈ ℕ.
● Let n be a natural number.
● Let n be an arbitrary n ∈ ℕ.

● The writer (you) chooses and owns a value if you use 
wording like this:
● We choose r = n + 1.
● Pick s = n.

● Neither of you chooses a value if you use wording like this:
● Since n is even, we know there is some k ∈ ℤ where n = 2k.
● Because n is odd, there must be some integer k where n = 2k + 1.



  

Proofwriting Rules We 
Learned Today

● Direct proof: The first two sentences of a proof of a 
theorem with “If...then...” form are (1) assume the “if” 
part, (2) announce you “want to show” the “then” part. 

● To prove a universal, “pick an arbitrary.”
● To prove an existential, (1) announce a concrete value that 

works, then (2) justify that it works.
● Use formal definitions of terms.
● Write in complete sentences.
● Clearly introduce variable names using prescribed 

language. Don’t reuse/overlap variable names.
● Proof by Cases: You may divide a situation into all possible 

cases, and prove each one separately, to prove the whole. 
Give clear case labels, which act as assumptions.



  

Next Time

● Indirect Proofs
● How do you prove something without actually proving 

it?
● Mathematical Implications

● What exactly does “if P, then Q” mean?
● Proof by Contrapositive

● A helpful technique for proving implications.
● Proof by Contradiction

● Proving something is true by showing it can't be false.
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